Difference between revisions of "Mediawiki with steroids"

From
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
= uploads =
 +
* http://www.mediawiki.org/wiki/Manual:Configuring_file_uploads
 +
 
= graphviz =
 
= graphviz =
  
Line 67: Line 70:
 
</graphviz>
 
</graphviz>
  
= Latex inline =
+
= gnuplot =
== Introduzione ==
+
== graph from equation ==
Latex, installato sul server su cui girano i servizi necessari per eseguire il wiki, rende possibile inserire formule nel testo.
+
<math>
 +
y=sin(x)
 +
</math>
  
'''Le formule sono convertite in immagine e l'immagine automaticamente incorporata nel testo'''.
+
<gnuplot>
 +
plot sin(x)
 +
</gnuplot>
  
Vediamo alcuni esempi:
+
<math>
 +
y=x^2-3
 +
</math>
  
* <math>E=m c^2</math>
+
<gnuplot>
* <math>tg(\theta) = \frac{sin(\theta)}{cos(\theta)}</math>
+
plot x**2-3
 +
</gnuplot>
  
* Un promemoria per la sintassi di [[LaTex]]
+
<gnuplot>
 
+
set title "Price of Opteron"
= math =
+
set xlabel "Gigahertz"
== trigonometry ==
+
set zlabel "$$"
 +
set ylabel "Date"
 +
set ydata time
 +
set timefmt "%m/%d/%Y"
 +
set format y "          %m/%Y"
 +
set ytics ("01/20/2008", "03/14/2008")
 +
set style data lines
 +
set view 50,200,1,1
 +
set grid z
 +
splot \
 +
<dataset>
 +
2.2 01/20/2008 100 #gighz.. date.. dollars
 +
2.4 01/20/2008 150
 +
2.6 01/20/2008 270
 +
2.8 01/20/2008 480
 +
3.0 01/20/2008 700
  
# <math>sin(x)^2+cos(x)^2=1</math>
+
2.2 03/14/2008 100
# <math>sin(x+y)=sin(x)cos(y)+sin(y)cos(x)</math>
+
2.4 03/14/2008 122
# <math>cos(x+y)=cos(x)cos(y)-sin(x)sin(y)</math>
+
2.6 03/14/2008 245
# <math>tg(x)=\frac{sin(x)}{cos(x)}</math>
+
2.8 03/14/2008 410
# <math>ctg(x)=\frac{cos(x)}{sin(x)}</math>
+
3.0 03/14/2008 700
 
+
</dataset> using 1:2:3 title "Dual Core" with lines, \
= physics =
+
<dataset>
 +
1.9 01/20/2008 330
 +
2.0 01/20/2008 415
 +
2.2 01/20/2008 650
 +
2.3 01/20/2008 800
 +
2.4 01/20/2008 1115
 +
2.5 01/20/2008 1275
  
# <math>F = m a</math>
+
1.9 03/14/2008 330
# <math>E=m c^2</math>
+
2.0 03/14/2008 270
# <math>E=h \nu </math>
+
2.2 03/14/2008 480
 +
2.3 03/14/2008 720
 +
2.4 03/14/2008 925
 +
2.5 03/14/2008 1235
 +
</dataset> using 1:2:3 title "Quad Core" with lines
 +
</gnuplot>
  
= latex =
+
== graph from data (inline) ==
===Math Alphabets===
+
<gnuplot>
<div style="font-size:10pt; padding=5px;">
+
plot '-' using 1:2 t 'curva1' with linesp lt 1 lw 3, \
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:left; border-color:#AAAAAA; border-style:solid;"
+
'-' using 1:2 t 'curva2' with linesp lt 2 lw 3
|- style="background:#F6F9ED; text-align:center;"
+
1 2
! code
+
2 4
! Alphabet, Numbers & Symbols
+
3 8
|-
+
4 2
| <nowiki>\mathrm{ }</nowiki>
+
5 4
| <math>\mathrm{1234567890}\quad \mathrm{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
6 8
|-
+
7 2
| <nowiki>\mathit{ }</nowiki>
+
8 4
| <math>\mathit{1234567890}\quad \mathit{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
9 8
|-
+
e
| <nowiki>\mathsf{ }</nowiki>
+
1 2
| <math>\mathsf{1234567890}\quad \mathsf{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
2 4
|-
+
3 8
| <nowiki>\mathbf{ }</nowiki>
+
4 16
| <math>\mathbf{1234567890}\quad \mathbf{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
5 32
|-
+
6 64
| <nowiki>\mathcal{ }</nowiki>
+
7 128
| <math>\mathcal{1234567890}\quad \mathcal{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
8 256
|-
+
9 512
| <nowiki>\mathbb{ }</nowiki>
+
e
| <math>\mathbb{1234567890}\quad \mathbb{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
</gnuplot>
|-
+
 
| <nowiki>\mathfrak{ }</nowiki>
+
= Latex inline =
| <math>\mathfrak{1234567890}\quad \mathfrak{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
+
== Introduzione ==
|}
+
Latex, installato sul server su cui girano i servizi necessari per eseguire il wiki, rende possibile inserire formule nel testo.
</div>
+
 
<br/>
+
'''Le formule sono convertite in immagine e l'immagine automaticamente incorporata nel testo'''.
 +
 
 +
Vediamo alcuni esempi:
  
===Greek Symbols===
+
* <math>E=m c^2</math>
<div style="font-size:10pt; padding=5px;">
+
* <math>tg(\theta) = \frac{sin(\theta)}{cos(\theta)}</math>
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:center; border-color:#AAAAAA; border-style:solid;"
+
 
|- style="background:#F6F9ED; text-align:center;"
+
* Un promemoria per la sintassi di [[LaTex]]
! Name
+
 
! LaTeX Code
+
= math =
! Lowcase
+
== trigonometry ==
! LaTeX Code
+
 
! Capital
+
# <math>sin(x)^2+cos(x)^2=1</math>
! LaTeX Code
+
# <math>sin(x+y)=sin(x)cos(y)+sin(y)cos(x)</math>
! Bold Lowcase
+
# <math>cos(x+y)=cos(x)cos(y)-sin(x)sin(y)</math>
! LaTeX Code
+
# <math>tg(x)=\frac{sin(x)}{cos(x)}</math>
! Bold Capital
+
# <math>ctg(x)=\frac{cos(x)}{sin(x)}</math>
 +
 
 +
= physics =
 +
 
 +
# <math>F = m a</math>
 +
# <math>E=m c^2</math>
 +
# <math>E=h \nu </math>
 +
 
 +
= latex =
 +
===Math Alphabets===
 +
<div style="font-size:10pt; padding=5px;">
 +
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:left; border-color:#AAAAAA; border-style:solid;"
 +
|- style="background:#F6F9ED; text-align:center;"
 +
! code
 +
! Alphabet, Numbers & Symbols
 
|-
 
|-
| '''ALPHA'''
+
| <nowiki>\mathrm{ }</nowiki>
| <nowiki>\alpha</nowiki>
+
| <math>\mathrm{1234567890}\quad \mathrm{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <math>\alpha\,</math>
+
|-
| <nowiki>\Alpha</nowiki>
+
| <nowiki>\mathit{ }</nowiki>
| <math>\Alpha\,</math>
+
| <math>\mathit{1234567890}\quad \mathit{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <nowiki>\boldsymbol{\alpha}</nowiki>
 
| <math>\boldsymbol{\alpha}</math>
 
| <nowiki>\boldsymbol{\Alpha}</nowiki>
 
| <math>\boldsymbol{\Alpha}</math>
 
 
|-
 
|-
| '''BETA'''
+
| <nowiki>\mathsf{ }</nowiki>
| <nowiki>\beta</nowiki>
+
| <math>\mathsf{1234567890}\quad \mathsf{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <math>\beta\,</math>
 
| <nowiki>\Beta</nowiki>
 
| <math>\Beta\,</math>
 
| <nowiki>\boldsymbol{\beta}</nowiki>
 
| <math>\boldsymbol{\beta}</math>
 
| <nowiki>\boldsymbol{\Beta}</nowiki>
 
| <math>\boldsymbol{\Beta}</math>
 
 
|-
 
|-
| '''GAMMA'''
+
| <nowiki>\mathbf{ }</nowiki>
| <nowiki>\gamma</nowiki>
+
| <math>\mathbf{1234567890}\quad \mathbf{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <math>\gamma\,</math>
 
| <nowiki>\Gamma</nowiki>
 
| <math>\Gamma\,</math>
 
| <nowiki>\boldsymbol{\gamma}</nowiki>
 
| <math>\boldsymbol{\gamma}</math>
 
| <nowiki>\boldsymbol{\Gamma}</nowiki>
 
| <math>\boldsymbol{\Gamma}</math>
 
 
|-
 
|-
| '''DIGAMMA'''
+
| <nowiki>\mathcal{ }</nowiki>
| <nowiki>\digamma</nowiki>
+
| <math>\mathcal{1234567890}\quad \mathcal{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <math>\digamma\,</math>
 
|
 
|
 
| <nowiki>\boldsymbol{\digamma}</nowiki>
 
| <math>\boldsymbol{\digamma}</math>
 
|
 
|
 
 
|-
 
|-
| '''DELTA'''
+
| <nowiki>\mathbb{ }</nowiki>
| <nowiki>\delta</nowiki>
+
| <math>\mathbb{1234567890}\quad \mathbb{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <math>\delta\,</math>
 
| <nowiki>\Delta</nowiki>
 
| <math>\Delta\,</math>
 
| <nowiki>\boldsymbol{\delta}</nowiki>
 
| <math>\boldsymbol{\delta}</math>
 
| <nowiki>\boldsymbol{\Delta}</nowiki>
 
| <math>\boldsymbol{\Delta}</math>
 
 
|-
 
|-
| '''EPSILON'''
+
| <nowiki>\mathfrak{ }</nowiki>
| <nowiki>\epsilon</nowiki>
+
| <math>\mathfrak{1234567890}\quad \mathfrak{abcdefghijklmnopqrstuvwxyz}\qquad</math><br/><math>\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,</math>
| <math>\epsilon\,</math>
+
|}
| <nowiki>\Epsilon</nowiki>
+
</div>
| <math>\Epsilon\,</math>
+
<br/>
| <nowiki>\boldsymbol{\epsilon}</nowiki>
+
 
| <math>\boldsymbol{\epsilon}</math>
+
===Greek Symbols===
| <nowiki>\boldsymbol{\Epsilon}</nowiki>
+
<div style="font-size:10pt; padding=5px;">
| <math>\boldsymbol{\Epsilon}</math>
+
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:center; border-color:#AAAAAA; border-style:solid;"
 +
|- style="background:#F6F9ED; text-align:center;"
 +
! Name
 +
! LaTeX Code
 +
! Lowcase
 +
! LaTeX Code
 +
! Capital
 +
! LaTeX Code
 +
! Bold Lowcase
 +
! LaTeX Code
 +
! Bold Capital
 
|-
 
|-
| '''VAREPSILON'''
+
| '''ALPHA'''
| <nowiki>\varepsilon</nowiki>
+
| <nowiki>\alpha</nowiki>
| <math>\varepsilon\,</math>
+
| <math>\alpha\,</math>
|  
+
| <nowiki>\Alpha</nowiki>
|
+
| <math>\Alpha\,</math>
| <nowiki>\boldsymbol{\varepsilon}</nowiki>
+
| <nowiki>\boldsymbol{\alpha}</nowiki>
| <math>\boldsymbol{\varepsilon}</math>
+
| <math>\boldsymbol{\alpha}</math>
|
+
| <nowiki>\boldsymbol{\Alpha}</nowiki>
|  
+
| <math>\boldsymbol{\Alpha}</math>
 
|-
 
|-
| '''ZETA'''
+
| '''BETA'''
| <nowiki>\zeta</nowiki>
+
| <nowiki>\beta</nowiki>
| <math>\zeta\,</math>
+
| <math>\beta\,</math>
| <nowiki>\Zeta</nowiki>
+
| <nowiki>\Beta</nowiki>
| <math>\Zeta\,</math>
+
| <math>\Beta\,</math>
| <nowiki>\boldsymbol{\zeta}</nowiki>
+
| <nowiki>\boldsymbol{\beta}</nowiki>
| <math>\boldsymbol{\zeta}</math>
+
| <math>\boldsymbol{\beta}</math>
| <nowiki>\boldsymbol{\Zeta}</nowiki>
+
| <nowiki>\boldsymbol{\Beta}</nowiki>
| <math>\boldsymbol{\Zeta}</math>
+
| <math>\boldsymbol{\Beta}</math>
 
|-
 
|-
| '''ETA'''
+
| '''GAMMA'''
| <nowiki>\eta</nowiki>
+
| <nowiki>\gamma</nowiki>
| <math>\eta\,</math>
+
| <math>\gamma\,</math>
| <nowiki>\Eta</nowiki>
+
| <nowiki>\Gamma</nowiki>
| <math>\Eta\,</math>
+
| <math>\Gamma\,</math>
| <nowiki>\boldsymbol{\eta}</nowiki>
+
| <nowiki>\boldsymbol{\gamma}</nowiki>
| <math>\boldsymbol{\eta}</math>
+
| <math>\boldsymbol{\gamma}</math>
| <nowiki>\boldsymbol{\Eta}</nowiki>
+
| <nowiki>\boldsymbol{\Gamma}</nowiki>
| <math>\boldsymbol{\Eta}</math>
+
| <math>\boldsymbol{\Gamma}</math>
 
|-
 
|-
| '''THETA'''
+
| '''DIGAMMA'''
| <nowiki>\theta</nowiki>
+
| <nowiki>\digamma</nowiki>
| <math>\theta\,</math>
+
| <math>\digamma\,</math>
| <nowiki>\Theta</nowiki>
+
|  
| <math>\Theta\,</math>
+
|  
| <nowiki>\boldsymbol{\theta}</nowiki>
+
| <nowiki>\boldsymbol{\digamma}</nowiki>
| <math>\boldsymbol{\theta}</math>
+
| <math>\boldsymbol{\digamma}</math>
| <nowiki>\boldsymbol{\Theta}</nowiki>
 
| <math>\boldsymbol{\Theta}</math>
 
|-
 
| '''VARTHETA'''
 
| <nowiki>\vartheta</nowiki>
 
| <math>\vartheta\,</math>
 
|  
 
|  
 
| <nowiki>\boldsymbol{\vartheta}</nowiki>
 
| <math>\boldsymbol{\vartheta}</math>
 
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
| '''IOTA'''
+
| '''DELTA'''
| <nowiki>\iota</nowiki>
+
| <nowiki>\delta</nowiki>
| <math>\iota\,</math>
+
| <math>\delta\,</math>
| <nowiki>\Iota</nowiki>
+
| <nowiki>\Delta</nowiki>
| <math>\Iota\,</math>
+
| <math>\Delta\,</math>
| <nowiki>\boldsymbol{\iota}</nowiki>
+
| <nowiki>\boldsymbol{\delta}</nowiki>
| <math>\boldsymbol{\iota}</math>
+
| <math>\boldsymbol{\delta}</math>
| <nowiki>\boldsymbol{\Iota}</nowiki>
+
| <nowiki>\boldsymbol{\Delta}</nowiki>
| <math>\boldsymbol{\Iota}</math>
+
| <math>\boldsymbol{\Delta}</math>
 
|-
 
|-
| '''KAPPA'''
+
| '''EPSILON'''
| <nowiki>\kappa</nowiki>
+
| <nowiki>\epsilon</nowiki>
| <math>\kappa\,</math>
+
| <math>\epsilon\,</math>
| <nowiki>\Kappa</nowiki>
+
| <nowiki>\Epsilon</nowiki>
| <math>\Kappa\,</math>
+
| <math>\Epsilon\,</math>
| <nowiki>\boldsymbol{\kappa}</nowiki>
+
| <nowiki>\boldsymbol{\epsilon}</nowiki>
| <math>\boldsymbol{\kappa}</math>
+
| <math>\boldsymbol{\epsilon}</math>
| <nowiki>\boldsymbol{\Kappa}</nowiki>
+
| <nowiki>\boldsymbol{\Epsilon}</nowiki>
| <math>\boldsymbol{\Kappa}</math>
+
| <math>\boldsymbol{\Epsilon}</math>
 
|-
 
|-
| '''VARKAPPA'''
+
| '''VAREPSILON'''
| <nowiki>\varkappa</nowiki>
+
| <nowiki>\varepsilon</nowiki>
| <math>\varkappa\,</math>
+
| <math>\varepsilon\,</math>
|
 
|
 
| <nowiki>\boldsymbol{\varkappa}</nowiki>
 
| <math>\boldsymbol{\varkappa}</math>
 
 
|  
 
|  
 +
|
 +
| <nowiki>\boldsymbol{\varepsilon}</nowiki>
 +
| <math>\boldsymbol{\varepsilon}</math>
 +
|
 
|  
 
|  
 
|-
 
|-
| '''LAMBDA'''
+
| '''ZETA'''
| <nowiki>\lambda</nowiki>
+
| <nowiki>\zeta</nowiki>
| <math>\lambda\,</math>
+
| <math>\zeta\,</math>
| <nowiki>\Lambda</nowiki>
+
| <nowiki>\Zeta</nowiki>
| <math>\Lambda\,</math>
+
| <math>\Zeta\,</math>
| <nowiki>\boldsymbol{\lambda}</nowiki>
+
| <nowiki>\boldsymbol{\zeta}</nowiki>
| <math>\boldsymbol{\lambda}</math>
+
| <math>\boldsymbol{\zeta}</math>
| <nowiki>\boldsymbol{\Lambda}</nowiki>
+
| <nowiki>\boldsymbol{\Zeta}</nowiki>
| <math>\boldsymbol{\Lambda}</math>
+
| <math>\boldsymbol{\Zeta}</math>
 
|-
 
|-
| '''MU'''
+
| '''ETA'''
| <nowiki>\mu</nowiki>
+
| <nowiki>\eta</nowiki>
| <math>\mu\,</math>
+
| <math>\eta\,</math>
| <nowiki>\Mu</nowiki>
+
| <nowiki>\Eta</nowiki>
| <math>\Mu\,</math>
+
| <math>\Eta\,</math>
| <nowiki>\boldsymbol{\mu}</nowiki>
+
| <nowiki>\boldsymbol{\eta}</nowiki>
| <math>\boldsymbol{\mu}</math>
+
| <math>\boldsymbol{\eta}</math>
| <nowiki>\boldsymbol{\Mu}</nowiki>
+
| <nowiki>\boldsymbol{\Eta}</nowiki>
| <math>\boldsymbol{\Mu}</math>
+
| <math>\boldsymbol{\Eta}</math>
 
|-
 
|-
| '''NU'''
+
| '''THETA'''
| <nowiki>\nu</nowiki>
+
| <nowiki>\theta</nowiki>
| <math>\nu\,</math>
+
| <math>\theta\,</math>
| <nowiki>\Nu</nowiki>
+
| <nowiki>\Theta</nowiki>
| <math>\Nu\,</math>
+
| <math>\Theta\,</math>
| <nowiki>\boldsymbol{\nu}</nowiki>
+
| <nowiki>\boldsymbol{\theta}</nowiki>
| <math>\boldsymbol{\nu}</math>
+
| <math>\boldsymbol{\theta}</math>
| <nowiki>\boldsymbol{\Nu}</nowiki>
+
| <nowiki>\boldsymbol{\Theta}</nowiki>
| <math>\boldsymbol{\Nu}</math>
+
| <math>\boldsymbol{\Theta}</math>
 
|-
 
|-
| '''XI'''
+
| '''VARTHETA'''
| <nowiki>\xi</nowiki>
+
| <nowiki>\vartheta</nowiki>
| <math>\xi\,</math>
+
| <math>\vartheta\,</math>
| <nowiki>\Xi</nowiki>
+
|  
| <math>\Xi\,</math>
+
|  
| <nowiki>\boldsymbol{\xi}</nowiki>
+
| <nowiki>\boldsymbol{\vartheta}</nowiki>
| <math>\boldsymbol{\xi}</math>
+
| <math>\boldsymbol{\vartheta}</math>
| <nowiki>\boldsymbol{\Xi}</nowiki>
+
|  
| <math>\boldsymbol{\Xi}</math>
+
|  
 
|-
 
|-
| '''OMICRON'''
+
| '''IOTA'''
| <nowiki>o</nowiki>
+
| <nowiki>\iota</nowiki>
| <math>o\,</math>
+
| <math>\iota\,</math>
| <nowiki>O</nowiki>
+
| <nowiki>\Iota</nowiki>
| <math>O\,</math>
+
| <math>\Iota\,</math>
| <nowiki>\boldsymbol{o}</nowiki>
+
| <nowiki>\boldsymbol{\iota}</nowiki>
| <math>\boldsymbol{o}</math>
+
| <math>\boldsymbol{\iota}</math>
| <nowiki>\boldsymbol{O}</nowiki>
+
| <nowiki>\boldsymbol{\Iota}</nowiki>
| <math>\boldsymbol{O}</math>
+
| <math>\boldsymbol{\Iota}</math>
 
|-
 
|-
| '''PI'''
+
| '''KAPPA'''
| <nowiki>\pi</nowiki>
+
| <nowiki>\kappa</nowiki>
| <math>\pi\,</math>
+
| <math>\kappa\,</math>
| <nowiki>\Pi</nowiki>
+
| <nowiki>\Kappa</nowiki>
| <math>\Pi\,</math>
+
| <math>\Kappa\,</math>
| <nowiki>\boldsymbol{\pi}</nowiki>
+
| <nowiki>\boldsymbol{\kappa}</nowiki>
| <math>\boldsymbol{\pi}</math>
+
| <math>\boldsymbol{\kappa}</math>
| <nowiki>\boldsymbol{\Pi}</nowiki>
+
| <nowiki>\boldsymbol{\Kappa}</nowiki>
| <math>\boldsymbol{\Pi}</math>
+
| <math>\boldsymbol{\Kappa}</math>
 
|-
 
|-
| '''VARPI'''
+
| '''VARKAPPA'''
| <nowiki>\varpi</nowiki>
+
| <nowiki>\varkappa</nowiki>
| <math>\varpi\,</math>
+
| <math>\varkappa\,</math>
 
|  
 
|  
 
|  
 
|  
| <nowiki>\boldsymbol{\varpi}</nowiki>
+
| <nowiki>\boldsymbol{\varkappa}</nowiki>
| <math>\boldsymbol{\varpi}</math>
+
| <math>\boldsymbol{\varkappa}</math>
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
| '''RHO'''
+
| '''LAMBDA'''
| <nowiki>\rho</nowiki>
+
| <nowiki>\lambda</nowiki>
| <math>\rho\,</math>
+
| <math>\lambda\,</math>
| <nowiki>\Rho</nowiki>
+
| <nowiki>\Lambda</nowiki>
| <math>\Rho\,</math>
+
| <math>\Lambda\,</math>
| <nowiki>\boldsymbol{\rho}</nowiki>
+
| <nowiki>\boldsymbol{\lambda}</nowiki>
| <math>\boldsymbol{\rho}</math>
+
| <math>\boldsymbol{\lambda}</math>
| <nowiki>\boldsymbol{\Rho}</nowiki>
+
| <nowiki>\boldsymbol{\Lambda}</nowiki>
| <math>\boldsymbol{\Rho}</math>
+
| <math>\boldsymbol{\Lambda}</math>
 
|-
 
|-
| '''VARRHO'''
+
| '''MU'''
| <nowiki>\varrho</nowiki>
+
| <nowiki>\mu</nowiki>
| <math>\varrho\,</math>
+
| <math>\mu\,</math>
|  
+
| <nowiki>\Mu</nowiki>
|  
+
| <math>\Mu\,</math>
| <nowiki>\boldsymbol{\varrho}</nowiki>
+
| <nowiki>\boldsymbol{\mu}</nowiki>
| <math>\boldsymbol{\varrho}</math>
+
| <math>\boldsymbol{\mu}</math>
|
+
| <nowiki>\boldsymbol{\Mu}</nowiki>
|  
+
| <math>\boldsymbol{\Mu}</math>
 
|-
 
|-
| '''SIGMA'''
+
| '''NU'''
| <nowiki>\sigma</nowiki>
+
| <nowiki>\nu</nowiki>
| <math>\sigma\,</math>
+
| <math>\nu\,</math>
| <nowiki>\Sigma</nowiki>
+
| <nowiki>\Nu</nowiki>
| <math>\Sigma\,</math>
+
| <math>\Nu\,</math>
| <nowiki>\boldsymbol{\sigma}</nowiki>
+
| <nowiki>\boldsymbol{\nu}</nowiki>
| <math>\boldsymbol{\sigma}</math>
+
| <math>\boldsymbol{\nu}</math>
| <nowiki>\boldsymbol{\Sigma}</nowiki>
+
| <nowiki>\boldsymbol{\Nu}</nowiki>
| <math>\boldsymbol{\Sigma}</math>
+
| <math>\boldsymbol{\Nu}</math>
 
|-
 
|-
| '''VARSIGMA'''
+
| '''XI'''
| <nowiki>\varsigma</nowiki>
+
| <nowiki>\xi</nowiki>
| <math>\varsigma\,</math>
+
| <math>\xi\,</math>
|  
+
| <nowiki>\Xi</nowiki>
|  
+
| <math>\Xi\,</math>
| <nowiki>\boldsymbol{\varsigma}</nowiki>
+
| <nowiki>\boldsymbol{\xi}</nowiki>
| <math>\boldsymbol{\varsigma}</math>
+
| <math>\boldsymbol{\xi}</math>
|
+
| <nowiki>\boldsymbol{\Xi}</nowiki>
|  
+
| <math>\boldsymbol{\Xi}</math>
 
|-
 
|-
| '''TAU'''
+
| '''OMICRON'''
| <nowiki>\tau</nowiki>
+
| <nowiki>o</nowiki>
| <math>\tau\,</math>
+
| <math>o\,</math>
| <nowiki>\Tau</nowiki>
+
| <nowiki>O</nowiki>
| <math>\Tau\,</math>
+
| <math>O\,</math>
| <nowiki>\boldsymbol{\tau}</nowiki>
+
| <nowiki>\boldsymbol{o}</nowiki>
| <math>\boldsymbol{\tau}</math>
+
| <math>\boldsymbol{o}</math>
| <nowiki>\boldsymbol{\Tau}</nowiki>
+
| <nowiki>\boldsymbol{O}</nowiki>
| <math>\boldsymbol{\Tau}</math>
+
| <math>\boldsymbol{O}</math>
 
|-
 
|-
| '''UPSILON'''
+
| '''PI'''
| <nowiki>\upsilon</nowiki>
+
| <nowiki>\pi</nowiki>
| <math>\upsilon\,</math>
+
| <math>\pi\,</math>
| <nowiki>\Upsilon</nowiki>
+
| <nowiki>\Pi</nowiki>
| <math>\Upsilon\,</math>
+
| <math>\Pi\,</math>
| <nowiki>\boldsymbol{\upsilon}</nowiki>
+
| <nowiki>\boldsymbol{\pi}</nowiki>
| <math>\boldsymbol{\upsilon}</math>
+
| <math>\boldsymbol{\pi}</math>
| <nowiki>\boldsymbol{\Upsilon}</nowiki>
+
| <nowiki>\boldsymbol{\Pi}</nowiki>
| <math>\boldsymbol{\Upsilon}</math>
+
| <math>\boldsymbol{\Pi}</math>
 
|-
 
|-
| '''PHI'''
+
| '''VARPI'''
| <nowiki>\phi</nowiki>
+
| <nowiki>\varpi</nowiki>
| <math>\phi\,</math>
+
| <math>\varpi\,</math>
| <nowiki>\Phi</nowiki>
+
|
| <math>\Phi\,</math>
+
|
| <nowiki>\boldsymbol{\phi}</nowiki>
+
| <nowiki>\boldsymbol{\varpi}</nowiki>
| <math>\boldsymbol{\phi}</math>
+
| <math>\boldsymbol{\varpi}</math>
| <nowiki>\boldsymbol{\Phi}</nowiki>
+
|
| <math>\boldsymbol{\Phi}</math>
+
|
 +
|-
 +
| '''RHO'''
 +
| <nowiki>\rho</nowiki>
 +
| <math>\rho\,</math>
 +
| <nowiki>\Rho</nowiki>
 +
| <math>\Rho\,</math>
 +
| <nowiki>\boldsymbol{\rho}</nowiki>
 +
| <math>\boldsymbol{\rho}</math>
 +
| <nowiki>\boldsymbol{\Rho}</nowiki>
 +
| <math>\boldsymbol{\Rho}</math>
 
|-
 
|-
| '''VARPHI'''
+
| '''VARRHO'''
| <nowiki>\varphi</nowiki>
+
| <nowiki>\varrho</nowiki>
| <math>\varphi\,</math>
+
| <math>\varrho\,</math>
 
|  
 
|  
 
|  
 
|  
| <nowiki>\boldsymbol{\varphi}</nowiki>
+
| <nowiki>\boldsymbol{\varrho}</nowiki>
| <math>\boldsymbol{\varphi}</math>
+
| <math>\boldsymbol{\varrho}</math>
|  
+
|
 
|  
 
|  
 
|-
 
|-
| '''CHI'''
+
| '''SIGMA'''
| <nowiki>\chi</nowiki>
+
| <nowiki>\sigma</nowiki>
| <math>\chi\,</math>
+
| <math>\sigma\,</math>
| <nowiki>\Chi</nowiki>
+
| <nowiki>\Sigma</nowiki>
| <math>\Chi\,</math>
+
| <math>\Sigma\,</math>
| <nowiki>\boldsymbol{\chi}</nowiki>
+
| <nowiki>\boldsymbol{\sigma}</nowiki>
| <math>\boldsymbol{\chi}</math>
+
| <math>\boldsymbol{\sigma}</math>
| <nowiki>\boldsymbol{\Chi}</nowiki>
+
| <nowiki>\boldsymbol{\Sigma}</nowiki>
| <math>\boldsymbol{\Chi}</math>
+
| <math>\boldsymbol{\Sigma}</math>
 
|-
 
|-
| '''PSI'''
+
| '''VARSIGMA'''
| <nowiki>\psi</nowiki>
+
| <nowiki>\varsigma</nowiki>
| <math>\psi\,</math>
+
| <math>\varsigma\,</math>
| <nowiki>\Psi</nowiki>
+
|
| <math>\Psi\,</math>
+
|
| <nowiki>\boldsymbol{\psi}</nowiki>
+
| <nowiki>\boldsymbol{\varsigma}</nowiki>
| <math>\boldsymbol{\psi}</math>
+
| <math>\boldsymbol{\varsigma}</math>
| <nowiki>\boldsymbol{\Psi}</nowiki>
+
|
| <math>\boldsymbol{\Psi}</math>
+
|
 +
|-
 +
| '''TAU'''
 +
| <nowiki>\tau</nowiki>
 +
| <math>\tau\,</math>
 +
| <nowiki>\Tau</nowiki>
 +
| <math>\Tau\,</math>
 +
| <nowiki>\boldsymbol{\tau}</nowiki>
 +
| <math>\boldsymbol{\tau}</math>
 +
| <nowiki>\boldsymbol{\Tau}</nowiki>
 +
| <math>\boldsymbol{\Tau}</math>
 
|-
 
|-
| '''OMEGA'''
+
| '''UPSILON'''
| <nowiki>\omega</nowiki>
+
| <nowiki>\upsilon</nowiki>
| <math>\omega\,</math>
+
| <math>\upsilon\,</math>
| <nowiki>\Omega</nowiki>
+
| <nowiki>\Upsilon</nowiki>
| <math>\Omega\,</math>
+
| <math>\Upsilon\,</math>
| <nowiki>\boldsymbol{\omega}</nowiki>
+
| <nowiki>\boldsymbol{\upsilon}</nowiki>
| <math>\boldsymbol{\omega}</math>
+
| <math>\boldsymbol{\upsilon}</math>
| <nowiki>\boldsymbol{\Omega}</nowiki>
+
| <nowiki>\boldsymbol{\Upsilon}</nowiki>
| <math>\boldsymbol{\Omega}</math>
+
| <math>\boldsymbol{\Upsilon}</math>
|}
 
</div>
 
<br/>
 
===Hebrew Symbols===
 
<div style="font-size:10pt; padding=5px;">
 
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:center; border-color:#AAAAAA; border-style:solid;"
 
|- style="background:#F6F9ED; text-align:center;"
 
! LaTeX Code
 
! Aleph
 
! LaTeX Code
 
! Beth
 
! LaTeX Code
 
! Gimel
 
! LaTeX Code
 
! Daleth
 
 
|-
 
|-
| <nowiki>\aleph</nowiki>
+
| '''PHI'''
| <math>\aleph\,</math>
+
| <nowiki>\phi</nowiki>
| <nowiki>\beth</nowiki>
+
| <math>\phi\,</math>
| <math>\beth\,</math>
+
| <nowiki>\Phi</nowiki>
| <nowiki>\gimel</nowiki>
+
| <math>\Phi\,</math>
| <math>\gimel</math>
+
| <nowiki>\boldsymbol{\phi}</nowiki>
| <nowiki>\daleth</nowiki>
+
| <math>\boldsymbol{\phi}</math>
| <math>\daleth</math>
+
| <nowiki>\boldsymbol{\Phi}</nowiki>
|}
+
| <math>\boldsymbol{\Phi}</math>
 
 
===Arrows===
 
<div style="font-size:10pt; padding=5px;">
 
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:center; border-color:#AAAAAA; border-style:solid;"
 
|- style="background:#F6F9ED; text-align:center;"
 
! LaTeX Code
 
! Output
 
! LaTeX Code
 
! Output
 
! LaTeX Code
 
! Output
 
! LaTeX Code
 
! Output
 
 
|-
 
|-
| <nowiki>\Downarrow</nowiki>
+
| '''VARPHI'''
| <math>\Downarrow</math>
+
| <nowiki>\varphi</nowiki>
| <nowiki>\longleftarrow</nowiki>
+
| <math>\varphi\,</math>
| <math>\longleftarrow</math>
+
|  
| <nowiki>\nwarrow</nowiki>
+
|  
| <math>\nwarrow</math>
+
| <nowiki>\boldsymbol{\varphi}</nowiki>
| <nowiki>\downarrow</nowiki>
+
| <math>\boldsymbol{\varphi}</math>
| <math>\downarrow</math>
+
|  
 +
|  
 
|-
 
|-
| <nowiki>\Longleftarrow</nowiki>
+
| '''CHI'''
| <math>\Longleftarrow</math>
+
| <nowiki>\chi</nowiki>
| <nowiki>\Rightarrow</nowiki>
+
| <math>\chi\,</math>
| <math>\Rightarrow</math>
+
| <nowiki>\Chi</nowiki>
| <nowiki>\hookleftarrow</nowiki>
+
| <math>\Chi\,</math>
| <math>\hookleftarrow</math>
+
| <nowiki>\boldsymbol{\chi}</nowiki>
| <nowiki>\longleftrightarrow</nowiki>
+
| <math>\boldsymbol{\chi}</math>
| <math>\longleftrightarrow</math>
+
| <nowiki>\boldsymbol{\Chi}</nowiki>
 +
| <math>\boldsymbol{\Chi}</math>
 
|-
 
|-
| <nowiki>\rightarrow</nowiki>
+
| '''PSI'''
| <math>\rightarrow</math>
+
| <nowiki>\psi</nowiki>
|<nowiki>\hookrightarrow</nowiki>
+
| <math>\psi\,</math>
|<math>\hookrightarrow</math>
+
| <nowiki>\Psi</nowiki>
|<nowiki>\Longleftrightarrow</nowiki>
+
| <math>\Psi\,</math>
|<math>\Longleftrightarrow</math>
+
| <nowiki>\boldsymbol{\psi}</nowiki>
| <nowiki>\searrow</nowiki>
+
| <math>\boldsymbol{\psi}</math>
| <math>\searrow</math>
+
| <nowiki>\boldsymbol{\Psi}</nowiki>
 +
| <math>\boldsymbol{\Psi}</math>
 
|-
 
|-
|<nowiki>\longmapsto</nowiki>
+
| '''OMEGA'''
|<math>\longmapsto</math>
+
| <nowiki>\omega</nowiki>
| <nowiki>\swarrow</nowiki>
+
| <math>\omega\,</math>
| <math>\swarrow</math>
+
| <nowiki>\Omega</nowiki>
| <nowiki>\leftarrow</nowiki>
+
| <math>\Omega\,</math>
| <math>\leftarrow</math>
+
| <nowiki>\boldsymbol{\omega}</nowiki>
| <nowiki>\Updownarrow</nowiki>
+
| <math>\boldsymbol{\omega}</math>
| <math>\Updownarrow</math>
+
| <nowiki>\boldsymbol{\Omega}</nowiki>
|-
+
| <math>\boldsymbol{\Omega}</math>
| <nowiki>\Longrightarrow</nowiki>
+
|}
| <math>\Longrightarrow</math>
+
</div>
| <nowiki>\uparrow</nowiki>
+
<br/>
| <math>\uparrow</math>
+
===Hebrew Symbols===
| <nowiki>\Leftarrow</nowiki>
+
<div style="font-size:10pt; padding=5px;">
| <math>\Leftarrow</math>
+
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:center; border-color:#AAAAAA; border-style:solid;"
| <nowiki>\longrightarrow</nowiki>
+
|- style="background:#F6F9ED; text-align:center;"
| <math>\longrightarrow</math>
+
! LaTeX Code
 +
! Aleph
 +
! LaTeX Code
 +
! Beth
 +
! LaTeX Code
 +
! Gimel
 +
! LaTeX Code
 +
! Daleth
 
|-
 
|-
| <nowiki>\Uparrow</nowiki>
+
| <nowiki>\aleph</nowiki>
| <math>\Uparrow</math>
+
| <math>\aleph\,</math>
|<nowiki>\Leftrightarrow</nowiki>
+
| <nowiki>\beth</nowiki>
|<math>\Leftrightarrow</math>
+
| <math>\beth\,</math>
|<nowiki>\mapsto</nowiki>
+
| <nowiki>\gimel</nowiki>
|<math>\mapsto</math>
+
| <math>\gimel</math>
| <nowiki>\updownarrow</nowiki>
+
| <nowiki>\daleth</nowiki>
| <math>\updownarrow</math>
+
| <math>\daleth</math>
|-
 
|<nowiki>\nearrow</nowiki>
 
|<math>\nearrow</math>
 
|<nowiki>\nwarrow</nowiki>
 
|<math>\nwarrow</math>
 
|<nowiki>\searrow</nowiki>
 
|<math>\searrow</math>
 
|<nowiki>\swarrow</nowiki>
 
|<math>\swarrow</math>
 
|-
 
|<nowiki>\leftrightarrow</nowiki>
 
|<math>\leftrightarrow</math>
 
|<nowiki>\gets</nowiki>
 
|<math>\gets</math>
 
|<nowiki>\to</nowiki>
 
|<math>\to</math>
 
|
 
|
 
 
|}
 
|}
</div>
 
  
 
+
===Arrows===
# Accents
+
<div style="font-size:10pt; padding=5px;">
# Arrows
+
{| width=80% rules=all cellpadding=10 cellspacing="0" border=1px; style="text-align:center; border-color:#AAAAAA; border-style:solid;"
# Binary and relational operators
+
|- style="background:#F6F9ED; text-align:center;"
# Delimiters
+
! LaTeX Code
# Greek letters
+
! Output
# Miscellaneous symbols
+
! LaTeX Code
# Math functions
+
! Output
# Variable size math symbols
+
! LaTeX Code
# Math Miscellany
+
! Output
 
+
! LaTeX Code
 
+
! Output
 
 
The AMS dot symbols are named according to their intended usage: <nowiki>\dotsb</nowiki> between
 
pairs of binary operators/relations, <nowiki>\dotsc</nowiki> between pairs of commas, <nowiki>\dotsi</nowiki> between pairs of integrals, <nowiki>\dotsm</nowiki> between pairs of multiplication signs, and <nowiki>\dotso</nowiki> between other symbol pairs.
 
 
 
== Functions, symbols, special characters ==
 
 
 
<!-- Eight symbols per line seems to be optimal-->
 
{| class="wikitable"
 
! colspan="2" |<h3>Accents/Diacritics</h3>
 
 
|-
 
|-
|<code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code>
+
| <nowiki>\Downarrow</nowiki>
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
+
| <math>\Downarrow</math>
 +
| <nowiki>\longleftarrow</nowiki>
 +
| <math>\longleftarrow</math>
 +
| <nowiki>\nwarrow</nowiki>
 +
| <math>\nwarrow</math>
 +
| <nowiki>\downarrow</nowiki>
 +
| <math>\downarrow</math>
 
|-
 
|-
|<code>\check{a} \bar{a} \ddot{a} \dot{a}</code>
+
| <nowiki>\Longleftarrow</nowiki>
|<math>\check{a} \bar{a} \ddot{a} \dot{a}\!</math>
+
| <math>\Longleftarrow</math>
 +
| <nowiki>\Rightarrow</nowiki>
 +
| <math>\Rightarrow</math>
 +
| <nowiki>\hookleftarrow</nowiki>
 +
| <math>\hookleftarrow</math>
 +
| <nowiki>\longleftrightarrow</nowiki>
 +
| <math>\longleftrightarrow</math>
 
|-
 
|-
! colspan="2" |
+
| <nowiki>\rightarrow</nowiki>
 
+
| <math>\rightarrow</math>
<h3>Standard functions</h3>
+
|<nowiki>\hookrightarrow</nowiki>
|-
+
|<math>\hookrightarrow</math>
|<code>\sin a \cos b \tan c</code>
+
|<nowiki>\Longleftrightarrow</nowiki>
|<math>\sin a \cos b \tan c\!</math>
+
|<math>\Longleftrightarrow</math>
 +
| <nowiki>\searrow</nowiki>
 +
| <math>\searrow</math>
 
|-
 
|-
|<code>\sec d \csc e \cot f</code>
+
|<nowiki>\longmapsto</nowiki>
|<math>\sec d \csc e \cot f\,\!</math>
+
|<math>\longmapsto</math>
 +
| <nowiki>\swarrow</nowiki>
 +
| <math>\swarrow</math>
 +
| <nowiki>\leftarrow</nowiki>
 +
| <math>\leftarrow</math>
 +
| <nowiki>\Updownarrow</nowiki>
 +
| <math>\Updownarrow</math>
 
|-
 
|-
|<code>\arcsin h \arccos i \arctan j</code>
+
| <nowiki>\Longrightarrow</nowiki>
|<math>\arcsin h \arccos i \arctan j\,\!</math>
+
| <math>\Longrightarrow</math>
 +
| <nowiki>\uparrow</nowiki>
 +
| <math>\uparrow</math>
 +
| <nowiki>\Leftarrow</nowiki>
 +
| <math>\Leftarrow</math>
 +
| <nowiki>\longrightarrow</nowiki>
 +
| <math>\longrightarrow</math>
 
|-
 
|-
|<code>\sinh k \cosh l \tanh m \coth n\!</code>
+
| <nowiki>\Uparrow</nowiki>
|<math>\sinh k \cosh l \tanh m \coth n\!</math>
+
| <math>\Uparrow</math>
|-
+
|<nowiki>\Leftrightarrow</nowiki>
|<code>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</code>
+
|<math>\Leftrightarrow</math>
|<math>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</math>
+
|<nowiki>\mapsto</nowiki>
 +
|<math>\mapsto</math>
 +
| <nowiki>\updownarrow</nowiki>
 +
| <math>\updownarrow</math>
 
|-
 
|-
|<code>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t</code>
+
|<nowiki>\nearrow</nowiki>
|<math>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!</math>
+
|<math>\nearrow</math>
 +
|<nowiki>\nwarrow</nowiki>
 +
|<math>\nwarrow</math>
 +
|<nowiki>\searrow</nowiki>
 +
|<math>\searrow</math>
 +
|<nowiki>\swarrow</nowiki>
 +
|<math>\swarrow</math>
 
|-
 
|-
|<code>\lim u \limsup v \liminf w \min x \max y\!</code>
+
|<nowiki>\leftrightarrow</nowiki>
|<math>\lim u \limsup v \liminf w \min x \max y\!</math>
+
|<math>\leftrightarrow</math>
|-
+
|<nowiki>\gets</nowiki>
|<code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</code>
+
|<math>\gets</math>
|<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</math>
+
|<nowiki>\to</nowiki>
|-
+
|<math>\to</math>
|<code>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n</code>
+
|
|<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!</math>
+
|
|-
+
|}
! colspan="2" |
+
</div>
  
<h3>Modular arithmetic</h3>
 
|-
 
|<code>s_k \equiv 0 \pmod{m}</code>
 
|<math>s_k \equiv 0 \pmod{m}\,\!</math>
 
|-
 
|<code>a\,\bmod\,b</code>
 
|<math>a\,\bmod\,b\,\!</math>
 
|-
 
! colspan="2" | <h3>Derivatives</h3>
 
|-
 
|<code>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</code>
 
|<math>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</math>
 
|-
 
! colspan="2" |
 
  
<h3>Sets</h3>
+
# Accents
|-
+
# Arrows
|<code>\forall \exists \empty \emptyset \varnothing</code>
+
# Binary and relational operators
|<math>\forall \exists \empty \emptyset \varnothing\,\!</math>
+
# Delimiters
 +
# Greek letters
 +
# Miscellaneous symbols
 +
# Math functions
 +
# Variable size math symbols
 +
# Math Miscellany
 +
 
 +
 
 +
 
 +
The AMS dot symbols are named according to their intended usage: <nowiki>\dotsb</nowiki> between
 +
pairs of binary operators/relations, <nowiki>\dotsc</nowiki> between pairs of commas, <nowiki>\dotsi</nowiki> between pairs of integrals, <nowiki>\dotsm</nowiki> between pairs of multiplication signs, and <nowiki>\dotso</nowiki> between other symbol pairs.
 +
 
 +
== Functions, symbols, special characters ==
 +
 
 +
<!-- Eight symbols per line seems to be optimal-->
 +
{| class="wikitable"
 +
! colspan="2" |<h3>Accents/Diacritics</h3>
 
|-
 
|-
|<code>\in \ni \not \in \notin \subset \subseteq \supset \supseteq</code>
+
|<code>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</code>
|<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math>
+
|<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math>
 
|-
 
|-
|<code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code>
+
|<code>\check{a} \bar{a} \ddot{a} \dot{a}</code>
|<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
+
|<math>\check{a} \bar{a} \ddot{a} \dot{a}\!</math>
|-
 
|<code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code>
 
|<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>
 
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
  
<h3>Operators</h3>
+
<h3>Standard functions</h3>
 
|-
 
|-
|<code>+ \oplus \bigoplus \pm \mp - </code>
+
|<code>\sin a \cos b \tan c</code>
|<math>+ \oplus \bigoplus \pm \mp - \,\!</math>
+
|<math>\sin a \cos b \tan c\!</math>
 
|-
 
|-
|<code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code>
+
|<code>\sec d \csc e \cot f</code>
|<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
+
|<math>\sec d \csc e \cot f\,\!</math>
 
|-
 
|-
|<code>\star * / \div \frac{1}{2}</code>
+
|<code>\arcsin h \arccos i \arctan j</code>
|<math>\star * / \div \frac{1}{2}\,\!</math>
+
|<math>\arcsin h \arccos i \arctan j\,\!</math>
 
|-
 
|-
! colspan="2" |
+
|<code>\sinh k \cosh l \tanh m \coth n\!</code>
 
+
|<math>\sinh k \cosh l \tanh m \coth n\!</math>
<h3>Logic</h3>
 
 
|-
 
|-
|<code>\land (or \and) \wedge \bigwedge \bar{q} \to p</code>
+
|<code>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</code>
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
+
|<math>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</math>
 
|-
 
|-
|<code>\lor \vee \bigvee \lnot \neg q \And</code>
+
|<code>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t</code>
|<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>
+
|<math>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!</math>
 
|-
 
|-
! colspan="2" |
+
|<code>\lim u \limsup v \liminf w \min x \max y\!</code>
 
+
|<math>\lim u \limsup v \liminf w \min x \max y\!</math>
<h3>Root</h3>
 
 
|-
 
|-
|<code>\sqrt{2} \sqrt[n]{x}</code>
+
|<code>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</code>
|<math>\sqrt{2} \sqrt[n]{x}\,\!</math>
+
|<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</math>
 +
|-
 +
|<code>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n</code>
 +
|<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!</math>
 
|-
 
|-
! colspan="2" | <h3>Relations</h3>
+
! colspan="2" |
 +
 
 +
<h3>Modular arithmetic</h3>
 
|-
 
|-
|<code>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}</code>
+
|<code>s_k \equiv 0 \pmod{m}</code>
|<math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
+
|<math>s_k \equiv 0 \pmod{m}\,\!</math>
 
|-
 
|-
|<code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code>
+
|<code>a\,\bmod\,b</code>
|<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>
+
|<math>a\,\bmod\,b\,\!</math>
 
|-
 
|-
! colspan="2" |
+
! colspan="2" | <h3>Derivatives</h3>
 
 
<h3>Geometric</h3>
 
 
|-
 
|-
|<code><nowiki>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</nowiki></code>
+
|<code>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</code>
|<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math>
+
|<math>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</math>
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
  
<h3>Arrows</h3>
+
<h3>Sets</h3>
 
|-
 
|-
|<code>\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow</code>
+
|<code>\forall \exists \empty \emptyset \varnothing</code>
|<math>\leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!</math>
+
|<math>\forall \exists \empty \emptyset \varnothing\,\!</math>
 +
|-
 +
|<code>\in \ni \not \in \notin \subset \subseteq \supset \supseteq</code>
 +
|<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math>
 
|-
 
|-
|<code>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)</code>
+
|<code>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus</code>
|<math>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!</math>
+
|<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math>
 
|-
 
|-
|<code>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow</code>
+
|<code>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup</code>
|<math>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow \!</math>
+
|<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math>
 
|-
 
|-
|<code>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons</code>
+
! colspan="2" |
|<math>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!</math>
+
 
 +
<h3>Operators</h3>
 
|-
 
|-
|<code>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright</code>
+
|<code>+ \oplus \bigoplus \pm \mp - </code>
|<math>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!</math>
+
|<math>+ \oplus \bigoplus \pm \mp - \,\!</math>
 
|-
 
|-
|<code>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft</code>
+
|<code>\times \otimes \bigotimes \cdot \circ \bullet \bigodot</code>
|<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
+
|<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math>
 
|-
 
|-
|<code>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow </code>
+
|<code>\star * / \div \frac{1}{2}</code>
|<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!</math>
+
|<math>\star * / \div \frac{1}{2}\,\!</math>
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
  
<h3>Special</h3>
+
<h3>Logic</h3>
 +
|-
 +
|<code>\land (or \and) \wedge \bigwedge \bar{q} \to p</code>
 +
|<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math>
 +
|-
 +
|<code>\lor \vee \bigvee \lnot \neg q \And</code>
 +
|<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math>
 
|-
 
|-
|<code>\And \eth \S \P \% \dagger \ddagger \ldots \cdots</code>
+
! colspan="2" |
|<math>\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
+
 
 +
<h3>Root</h3>
 
|-
 
|-
|<code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code>
+
|<code>\sqrt{2} \sqrt[n]{x}</code>
|<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
+
|<math>\sqrt{2} \sqrt[n]{x}\,\!</math>
 
|-
 
|-
|<code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code>
+
! colspan="2" | <h3>Relations</h3>
|<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
 
 
|-
 
|-
|<code>\ell \mho \Finv \Re \Im \wp \complement</code>
+
|<code>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}</code>
|<math>\ell \mho \Finv \Re \Im \wp \complement\,\!</math>
+
|<math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math>
 
|-
 
|-
|<code>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp</code>
+
|<code>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto</code>
|<math>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>
+
|<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math>
 
|-
 
|-
 
! colspan="2" |
 
! colspan="2" |
  
<h3>Unsorted (new stuff)</h3>
+
<h3>Geometric</h3>
 
|-
 
|-
|<code> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code>
+
|<code><nowiki>\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ</nowiki></code>
|<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
+
|<math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math>
 
|-
 
|-
|<code> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code>
+
! colspan="2" |
|<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!</math>
+
 
 +
<h3>Arrows</h3>
 
|-
 
|-
|<code> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code>
+
|<code>\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow</code>
|<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
+
|<math>\leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!</math>
 
|-
 
|-
|<code> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code>
+
|<code>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)</code>
|<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
+
|<math>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!</math>
 
|-
 
|-
|<code> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</code>
+
|<code>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow</code>
|<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
+
|<math>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow \!</math>
 
|-
 
|-
|<code> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</code>
+
|<code>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons</code>
|<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
+
|<math>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!</math>
 
|-
 
|-
|<code> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</code>
+
|<code>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright</code>
|<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
+
|<math>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!</math>
 
|-
 
|-
|<code> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code>
+
|<code>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft</code>
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
+
|<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math>
 
|-
 
|-
|<code> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code>
+
|<code>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow </code>
|<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
+
|<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!</math>
 
|-
 
|-
|<code> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code>
+
! colspan="2" |
|<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
+
 
 +
<h3>Special</h3>
 
|-
 
|-
|<code> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code>
+
|<code>\And \eth \S \P \% \dagger \ddagger \ldots \cdots</code>
|<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
+
|<math>\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math>
 
|-
 
|-
|<code> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</code>
+
|<code>\smile \frown \wr \triangleleft \triangleright \infty \bot \top</code>
|<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
+
|<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math>
 
|-
 
|-
|<code>\subsetneq</code>
+
|<code>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar</code>
|<math>\subsetneq</math>
+
|<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math>
 
|-
 
|-
|<code> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code>
+
|<code>\ell \mho \Finv \Re \Im \wp \complement</code>
|<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
+
|<math>\ell \mho \Finv \Re \Im \wp \complement\,\!</math>
 
|-
 
|-
|<code> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code>
+
|<code>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp</code>
|<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
+
|<math>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math>
 
|-
 
|-
|<code> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code>
+
! colspan="2" |
|<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
+
 
 +
<h3>Unsorted (new stuff)</h3>
 
|-
 
|-
|<code>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus</code>
+
|<code> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</code>
|<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
+
|<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math>
 
|-
 
|-
|<code>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq</code>
+
|<code> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</code>
|<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
+
|<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!</math>
 
|-
 
|-
|<code>\dashv \asymp \doteq \parallel</code>
+
|<code> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</code>
|<math>\dashv \asymp \doteq \parallel\,\!</math>
+
|<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math>
 
|-
 
|-
|<code>\ulcorner \urcorner \llcorner \lrcorner</code>
+
|<code> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</code>
|<math>\ulcorner \urcorner \llcorner \lrcorner</math>
+
|<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math>
|}
 
 
 
== Larger Expressions ==
 
=== Subscripts, superscripts, integrals ===
 
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;"
 
!rowspan="2"|Feature!!rowspan="2"|Syntax!!colspan="2"|How it looks rendered
 
 
|-
 
|-
!HTML!!PNG
+
|<code> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</code>
 +
|<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math>
 
|-
 
|-
 +
|<code> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</code>
 +
|<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math>
 
|-
 
|-
|Superscript||<code>a^2</code>||<math>a^2</math>||<math>a^2 \,\!</math>
+
|<code> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</code>
 +
|<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math>
 
|-
 
|-
|Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math>
+
|<code> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</code>
 +
|<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math>
 
|-
 
|-
|rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math>
+
|<code> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</code>
 +
|<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math>
 
|-
 
|-
|<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math>
+
|<code> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</code>
 +
|<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math>
 
|-
 
|-
|rowspan=2|Combining sub & super without and with horizontal separation||<code>x_2^3</code>||<math>x_2^3</math>||<math>x_2^3 \,\!</math>
+
|<code> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</code>
 +
|<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math>
 
|-
 
|-
|<code>{x_2}^3</code>||<math>{x_2}^3</math>||<math>{x_2}^3 \,\!</math>
+
|<code> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</code>
 +
|<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math>
 
|-
 
|-
|Super super||<code>10^{10^{ \,\!{8} }</code>||colspan=2|<math>10^{10^{ \,\! 8 } }</math>
+
|<code>\subsetneq</code>
 +
|<math>\subsetneq</math>
 
|-
 
|-
|Super super||<code>10^{10^{ \overset{8}{} }}</code>||colspan=2|<math>10^{10^{ \overset{8}{} }}</math>
+
|<code> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</code>
 +
|<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math>
 
|-
 
|-
|Super super (wrong in HTML in some browsers)||<code>10^{10^8}</code> ||colspan=2|<math>10^{10^8}</math>
+
|<code> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</code>
 +
|<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math>
 
|-
 
|-
|rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
+
|<code> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</code>
 +
|<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math>
 
|-
 
|-
|<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
+
|<code>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus</code>
 +
|<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math>
 
|-
 
|-
|rowspan="4"|Stacking
+
|<code>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq</code>
|<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math>
+
|<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math>
 
|-
 
|-
|<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math>
+
|<code>\dashv \asymp \doteq \parallel</code>
 +
|<math>\dashv \asymp \doteq \parallel\,\!</math>
 
|-
 
|-
|<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
+
|<code>\ulcorner \urcorner \llcorner \lrcorner</code>
 +
|<math>\ulcorner \urcorner \llcorner \lrcorner</math>
 +
|}
 +
 
 +
== Larger Expressions ==
 +
=== Subscripts, superscripts, integrals ===
 +
{| border="2" cellpadding="4" cellspacing="0" style="margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;"
 +
!rowspan="2"|Feature!!rowspan="2"|Syntax!!colspan="2"|How it looks rendered
 
|-
 
|-
|<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
+
!HTML!!PNG
 
|-
 
|-
|Derivative (forced PNG)||<code>x', y<nowiki>''</nowiki>, f', f<nowiki>''</nowiki>\!</code>||&nbsp;||<math>x', y'', f', f''\!</math>
 
 
|-
 
|-
|Derivative (f in italics may overlap primes in HTML)||<code>x', y<nowiki>''</nowiki>, f', f<nowiki>''</nowiki></code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
+
|Superscript||<code>a^2</code>||<math>a^2</math>||<math>a^2 \,\!</math>
 
|-
 
|-
|Derivative (wrong in HTML)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
+
|Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math>
 
|-
 
|-
|Derivative (wrong in PNG)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
+
|rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math>
 
|-
 
|-
|Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math>
+
|<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math>
 
|-
 
|-
|rowspan="3"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
+
|rowspan=2|Combining sub & super without and with horizontal separation||<code>x_2^3</code>||<math>x_2^3</math>||<math>x_2^3 \,\!</math>
 
|-
 
|-
|<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
+
|<code>{x_2}^3</code>||<math>{x_2}^3</math>||<math>{x_2}^3 \,\!</math>
 
|-
 
|-
|<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
+
|Super super||<code>10^{10^{ \,\!{8} }</code>||colspan=2|<math>10^{10^{ \,\! 8 } }</math>
 
|-
 
|-
|Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
+
|Super super||<code>10^{10^{ \overset{8}{} }}</code>||colspan=2|<math>10^{10^{ \overset{8}{} }}</math>
 
|-
 
|-
|Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
+
|Super super (wrong in HTML in some browsers)||<code>10^{10^8}</code> ||colspan=2|<math>10^{10^8}</math>
 
|-
 
|-
|Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
+
|rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
 
|-
 
|-
|Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math>
+
|<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
 
|-
 
|-
|Sum (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
+
|rowspan="4"|Stacking
 +
|<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math>
 
|-
 
|-
|Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math>
+
|<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math>
 
|-
 
|-
|Product (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
+
|<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
 
|-
 
|-
|Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math>
+
|<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
 
|-
 
|-
|Coproduct (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
+
|Derivative (forced PNG)||<code>x', y<nowiki>''</nowiki>, f', f<nowiki>''</nowiki>\!</code>||&nbsp;||<math>x', y'', f', f''\!</math>
 
|-
 
|-
|Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math>
+
|Derivative (f in italics may overlap primes in HTML)||<code>x', y<nowiki>''</nowiki>, f', f<nowiki>''</nowiki></code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
 
|-
 
|-
|Limit (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
+
|Derivative (wrong in HTML)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
 +
|-
 +
|Derivative (wrong in PNG)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
 +
|-
 +
|Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math>
 
|-
 
|-
|Integral||<code>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</code>||colspan=2|<math>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</math>
+
|rowspan="3"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
 
|-
 
|-
|Integral (alternate limits style)||<code>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</code>||colspan=2|<math>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</math>
+
|<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
 
|-
 
|-
|Integral (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \int\limits_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int\limits_{-N}^{N} e^x\, dx</math>
+
|<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
 
|-
 
|-
|Integral (force&nbsp;<code>\textstyle</code>, alternate limits style)||<code>\textstyle \int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math>
+
|Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
 
|-
 
|-
|Double integral||<code>\iint\limits_D \, dx\,dy</code>||colspan=2|<math>\iint\limits_D \, dx\,dy</math>
+
|Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
 
|-
 
|-
|Triple integral||<code>\iiint\limits_E \, dx\,dy\,dz</code>||colspan=2|<math>\iiint\limits_E \, dx\,dy\,dz</math>
+
|Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
 
|-
 
|-
|Quadruple integral||<code>\iiiint\limits_F \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint\limits_F \, dx\,dy\,dz\,dt</math>
+
|Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math>
 
|-
 
|-
|Line or path integral||<code>\int_C x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\int_C x^3\, dx + 4y^2\, dy</math>
+
|Sum (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
 
|-
 
|-
|Closed line or path integral||<code>\oint_C x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint_C x^3\, dx + 4y^2\, dy</math>
+
|Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math>
 
|-
 
|-
|Intersections||<code>\bigcap_1^n p</code>||colspan=2|<math>\bigcap_1^n p</math>
+
|Product (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
 
|-
 
|-
|Unions||<code>\bigcup_1^k p</code>||colspan=2|<math>\bigcup_1^k p</math>
+
|Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math>
|}
+
|-
 
+
|Coproduct (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
=== Fractions, matrices, multilines ===
+
|-
<table class="wikitable">
+
|Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math>
 
+
|-
<tr>
+
|Limit (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
<th>Feature</th>
+
|-
<th>Syntax</th>
+
|Integral||<code>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</code>||colspan=2|<math>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</math>
<th>How it looks rendered</th>
+
|-
</tr>
+
|Integral (alternate limits style)||<code>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</code>||colspan=2|<math>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</math>
 
+
|-
<tr>
+
|Integral (force&nbsp;<code>\textstyle</code>)||<code>\textstyle \int\limits_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int\limits_{-N}^{N} e^x\, dx</math>
<td>Fractions</td>
+
|-
<td><code>\frac{2}{4}=0.5</code></td>
+
|Integral (force&nbsp;<code>\textstyle</code>, alternate limits style)||<code>\textstyle \int_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int_{-N}^{N} e^x\, dx</math>
<td><math>\frac{2}{4}=0.5</math></td>
+
|-
</tr>
+
|Double integral||<code>\iint\limits_D \, dx\,dy</code>||colspan=2|<math>\iint\limits_D \, dx\,dy</math>
 
+
|-
<tr>
+
|Triple integral||<code>\iiint\limits_E \, dx\,dy\,dz</code>||colspan=2|<math>\iiint\limits_E \, dx\,dy\,dz</math>
<td>Small Fractions</td>
+
|-
<td><code>\tfrac{2}{4} = 0.5</code></td>
+
|Quadruple integral||<code>\iiiint\limits_F \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint\limits_F \, dx\,dy\,dz\,dt</math>
<td><math>\tfrac{2}{4} = 0.5</math></td>
+
|-
</tr>
+
|Line or path integral||<code>\int_C x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\int_C x^3\, dx + 4y^2\, dy</math>
 +
|-
 +
|Closed line or path integral||<code>\oint_C x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint_C x^3\, dx + 4y^2\, dy</math>
 +
|-
 +
|Intersections||<code>\bigcap_1^n p</code>||colspan=2|<math>\bigcap_1^n p</math>
 +
|-
 +
|Unions||<code>\bigcup_1^k p</code>||colspan=2|<math>\bigcup_1^k p</math>
 +
|}
 +
 
 +
=== Fractions, matrices, multilines ===
 +
<table class="wikitable">
  
 
<tr>
 
<tr>
<td>Large (normal) Fractions</td>
+
<th>Feature</th>
<td><code>\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a </code></td>
+
<th>Syntax</th>
<td><math>\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a</math></td>
+
<th>How it looks rendered</th>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
<td>Large (nested) Fractions</td>
+
<td>Fractions</td>
 +
<td><code>\frac{2}{4}=0.5</code></td>
 +
<td><math>\frac{2}{4}=0.5</math></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>Small Fractions</td>
 +
<td><code>\tfrac{2}{4} = 0.5</code></td>
 +
<td><math>\tfrac{2}{4} = 0.5</math></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>Large (normal) Fractions</td>
 +
<td><code>\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a </code></td>
 +
<td><math>\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a</math></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>Large (nested) Fractions</td>
 
<td><code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</code></td>
 
<td><code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</code></td>
 
<td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
 
<td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
Line 1,925: Line 2,015:
 
|<math></math>
 
|<math></math>
 
|}
 
|}
 
= gnuplot =
 
== graph from equation ==
 
<math>
 
y=sin(x)
 
</math>
 
 
<gnuplot>
 
plot sin(x)
 
</gnuplot>
 
 
<math>
 
y=x^2-3
 
</math>
 
 
<gnuplot>
 
plot x**2-3
 
</gnuplot>
 
 
<gnuplot>
 
set title "Price of Opteron"
 
set xlabel "Gigahertz"
 
set zlabel "$$"
 
set ylabel "Date"
 
set ydata time
 
set timefmt "%m/%d/%Y"
 
set format y "          %m/%Y"
 
set ytics ("01/20/2008", "03/14/2008")
 
set style data lines
 
set view 50,200,1,1
 
set grid z
 
splot \
 
<dataset>
 
2.2 01/20/2008 100 #gighz.. date.. dollars
 
2.4 01/20/2008 150
 
2.6 01/20/2008 270
 
2.8 01/20/2008 480
 
3.0 01/20/2008 700
 
 
2.2 03/14/2008 100
 
2.4 03/14/2008 122
 
2.6 03/14/2008 245
 
2.8 03/14/2008 410
 
3.0 03/14/2008 700
 
</dataset> using 1:2:3 title "Dual Core" with lines, \
 
<dataset>
 
1.9 01/20/2008 330
 
2.0 01/20/2008 415
 
2.2 01/20/2008 650
 
2.3 01/20/2008 800
 
2.4 01/20/2008 1115
 
2.5 01/20/2008 1275
 
 
1.9 03/14/2008 330
 
2.0 03/14/2008 270
 
2.2 03/14/2008 480
 
2.3 03/14/2008 720
 
2.4 03/14/2008 925
 
2.5 03/14/2008 1235
 
</dataset> using 1:2:3 title "Quad Core" with lines
 
</gnuplot>
 
 
== graph from data (inline) ==
 
<gnuplot>
 
plot '-' using 1:2 t 'curva1' with linesp lt 1 lw 3, \
 
'-' using 1:2 t 'curva2' with linesp lt 2 lw 3
 
1 2
 
2 4
 
3 8
 
4 2
 
5 4
 
6 8
 
7 2
 
8 4
 
9 8
 
e
 
1 2
 
2 4
 
3 8
 
4 16
 
5 32
 
6 64
 
7 128
 
8 256
 
9 512
 
e
 
</gnuplot>
 
  
 
== Bibliografia ==
 
== Bibliografia ==
 
# LaTex http://korpelainen.net/mediawiki/index.php/LaTeX
 
# LaTex http://korpelainen.net/mediawiki/index.php/LaTeX

Latest revision as of 09:30, 6 May 2014

uploads

graphviz

The ImageMap extension is not installed.

The ImageMap extension is not installed.

The ImageMap extension is not installed.

The ImageMap extension is not installed.


The ImageMap extension is not installed.

gnuplot

graph from equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=sin(x) }

<gnuplot> plot sin(x) </gnuplot>

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2-3 }

<gnuplot> plot x**2-3 </gnuplot>

<gnuplot> set title "Price of Opteron" set xlabel "Gigahertz" set zlabel "$$" set ylabel "Date" set ydata time set timefmt "%m/%d/%Y" set format y "  %m/%Y" set ytics ("01/20/2008", "03/14/2008") set style data lines set view 50,200,1,1 set grid z splot \ <dataset> 2.2 01/20/2008 100 #gighz.. date.. dollars 2.4 01/20/2008 150 2.6 01/20/2008 270 2.8 01/20/2008 480 3.0 01/20/2008 700

2.2 03/14/2008 100 2.4 03/14/2008 122 2.6 03/14/2008 245 2.8 03/14/2008 410 3.0 03/14/2008 700 </dataset> using 1:2:3 title "Dual Core" with lines, \ <dataset> 1.9 01/20/2008 330 2.0 01/20/2008 415 2.2 01/20/2008 650 2.3 01/20/2008 800 2.4 01/20/2008 1115 2.5 01/20/2008 1275

1.9 03/14/2008 330 2.0 03/14/2008 270 2.2 03/14/2008 480 2.3 03/14/2008 720 2.4 03/14/2008 925 2.5 03/14/2008 1235 </dataset> using 1:2:3 title "Quad Core" with lines </gnuplot>

graph from data (inline)

<gnuplot>

plot '-' using 1:2 t 'curva1' with linesp lt 1 lw 3, \
'-' using 1:2 t 'curva2' with linesp lt 2 lw 3
1 2
2 4
3 8
4 2
5 4
6 8
7 2
8 4
9 8
e
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
e

</gnuplot>

Latex inline

Introduzione

Latex, installato sul server su cui girano i servizi necessari per eseguire il wiki, rende possibile inserire formule nel testo.

Le formule sono convertite in immagine e l'immagine automaticamente incorporata nel testo.

Vediamo alcuni esempi:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=m c^2}
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle tg(\theta) = \frac{sin(\theta)}{cos(\theta)}}
  • Un promemoria per la sintassi di LaTex

math

trigonometry

  1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sin(x)^2+cos(x)^2=1}
  2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sin(x+y)=sin(x)cos(y)+sin(y)cos(x)}
  3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cos(x+y)=cos(x)cos(y)-sin(x)sin(y)}
  4. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle tg(x)=\frac{sin(x)}{cos(x)}}
  5. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ctg(x)=\frac{cos(x)}{sin(x)}}

physics

  1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = m a}
  2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=m c^2}
  3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=h \nu }

latex

Math Alphabets

code Alphabet, Numbers & Symbols
\mathrm{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{1234567890}\quad \mathrm{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}
\mathit{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{1234567890}\quad \mathit{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}
\mathsf{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathsf{1234567890}\quad \mathsf{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}
\mathbf{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{1234567890}\quad \mathbf{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}
\mathcal{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{1234567890}\quad \mathcal{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}
\mathbb{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{1234567890}\quad \mathbb{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}
\mathfrak{ } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{1234567890}\quad \mathfrak{abcdefghijklmnopqrstuvwxyz}\qquad}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,}


Greek Symbols

Name LaTeX Code Lowcase LaTeX Code Capital LaTeX Code Bold Lowcase LaTeX Code Bold Capital
ALPHA \alpha Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha\,} \Alpha Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Alpha\,} \boldsymbol{\alpha} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\alpha}} \boldsymbol{\Alpha} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Alpha}}
BETA \beta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta\,} \Beta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Beta\,} \boldsymbol{\beta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\beta}} \boldsymbol{\Beta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Beta}}
GAMMA \gamma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma\,} \Gamma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma\,} \boldsymbol{\gamma} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\gamma}} \boldsymbol{\Gamma} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Gamma}}
DIGAMMA \digamma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \digamma\,} \boldsymbol{\digamma} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\digamma}}
DELTA \delta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta\,} \Delta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta\,} \boldsymbol{\delta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\delta}} \boldsymbol{\Delta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Delta}}
EPSILON \epsilon Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon\,} \Epsilon Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Epsilon\,} \boldsymbol{\epsilon} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\epsilon}} \boldsymbol{\Epsilon} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Epsilon}}
VAREPSILON \varepsilon Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon\,} \boldsymbol{\varepsilon} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varepsilon}}
ZETA \zeta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta\,} \Zeta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Zeta\,} \boldsymbol{\zeta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\zeta}} \boldsymbol{\Zeta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Zeta}}
ETA \eta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta\,} \Eta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Eta\,} \boldsymbol{\eta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\eta}} \boldsymbol{\Eta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Eta}}
THETA \theta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta\,} \Theta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Theta\,} \boldsymbol{\theta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\theta}} \boldsymbol{\Theta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Theta}}
VARTHETA \vartheta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartheta\,} \boldsymbol{\vartheta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\vartheta}}
IOTA \iota Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota\,} \Iota Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Iota\,} \boldsymbol{\iota} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\iota}} \boldsymbol{\Iota} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Iota}}
KAPPA \kappa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa\,} \Kappa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Kappa\,} \boldsymbol{\kappa} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\kappa}} \boldsymbol{\Kappa} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Kappa}}
VARKAPPA \varkappa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varkappa\,} \boldsymbol{\varkappa} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varkappa}}
LAMBDA \lambda Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda\,} \Lambda Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda\,} \boldsymbol{\lambda} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\lambda}} \boldsymbol{\Lambda} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Lambda}}
MU \mu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu\,} \Mu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Mu\,} \boldsymbol{\mu} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\mu}} \boldsymbol{\Mu} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Mu}}
NU \nu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu\,} \Nu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Nu\,} \boldsymbol{\nu} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\nu}} \boldsymbol{\Nu} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Nu}}
XI \xi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi\,} \Xi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Xi\,} \boldsymbol{\xi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\xi}} \boldsymbol{\Xi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Xi}}
OMICRON o Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle o\,} O Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O\,} \boldsymbol{o} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{o}} \boldsymbol{O} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{O}}
PI \pi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi\,} \Pi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi\,} \boldsymbol{\pi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\pi}} \boldsymbol{\Pi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Pi}}
VARPI \varpi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi\,} \boldsymbol{\varpi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varpi}}
RHO \rho Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho\,} \Rho Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rho\,} \boldsymbol{\rho} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\rho}} \boldsymbol{\Rho} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Rho}}
VARRHO \varrho Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varrho\,} \boldsymbol{\varrho} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varrho}}
SIGMA \sigma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma\,} \Sigma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma\,} \boldsymbol{\sigma} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\sigma}} \boldsymbol{\Sigma} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Sigma}}
VARSIGMA \varsigma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varsigma\,} \boldsymbol{\varsigma} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varsigma}}
TAU \tau Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau\,} \Tau Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Tau\,} \boldsymbol{\tau} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\tau}} \boldsymbol{\Tau} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Tau}}
UPSILON \upsilon Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \upsilon\,} \Upsilon Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon\,} \boldsymbol{\upsilon} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\upsilon}} \boldsymbol{\Upsilon} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Upsilon}}
PHI \phi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi\,} \Phi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\,} \boldsymbol{\phi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\phi}} \boldsymbol{\Phi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Phi}}
VARPHI \varphi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi\,} \boldsymbol{\varphi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varphi}}
CHI \chi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi\,} \Chi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Chi\,} \boldsymbol{\chi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\chi}} \boldsymbol{\Chi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Chi}}
PSI \psi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\,} \Psi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi\,} \boldsymbol{\psi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\psi}} \boldsymbol{\Psi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Psi}}
OMEGA \omega Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega\,} \Omega Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega\,} \boldsymbol{\omega} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\omega}} \boldsymbol{\Omega} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Omega}}


Hebrew Symbols

LaTeX Code Aleph LaTeX Code Beth LaTeX Code Gimel LaTeX Code Daleth
\aleph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph\,} \beth Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beth\,} \gimel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gimel} \daleth Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \daleth}

Arrows

LaTeX Code Output LaTeX Code Output LaTeX Code Output LaTeX Code Output
\Downarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Downarrow} \longleftarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longleftarrow} \nwarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nwarrow} \downarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \downarrow}
\Longleftarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Longleftarrow} \Rightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow} \hookleftarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hookleftarrow} \longleftrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longleftrightarrow}
\rightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} \hookrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hookrightarrow} \Longleftrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Longleftrightarrow} \searrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \searrow}
\longmapsto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longmapsto} \swarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \swarrow} \leftarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftarrow} \Updownarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Updownarrow}
\Longrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Longrightarrow} \uparrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \uparrow} \Leftarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow} \longrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longrightarrow}
\Uparrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Uparrow} \Leftrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftrightarrow} \mapsto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mapsto} \updownarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \updownarrow}
\nearrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nearrow} \nwarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nwarrow} \searrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \searrow} \swarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \swarrow}
\leftrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} \gets Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gets} \to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \to}


  1. Accents
  2. Arrows
  3. Binary and relational operators
  4. Delimiters
  5. Greek letters
  6. Miscellaneous symbols
  7. Math functions
  8. Variable size math symbols
  9. Math Miscellany


The AMS dot symbols are named according to their intended usage: \dotsb between pairs of binary operators/relations, \dotsc between pairs of commas, \dotsi between pairs of integrals, \dotsm between pairs of multiplication signs, and \dotso between other symbol pairs.

Functions, symbols, special characters

Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!}
\check{a} \bar{a} \ddot{a} \dot{a} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \check{a} \bar{a} \ddot{a} \dot{a}\!}

Standard functions

\sin a \cos b \tan c Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin a \cos b \tan c\!}
\sec d \csc e \cot f Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec d \csc e \cot f\,\!}
\arcsin h \arccos i \arctan j Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arcsin h \arccos i \arctan j\,\!}
\sinh k \cosh l \tanh m \coth n\! Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sinh k \cosh l \tanh m \coth n\!}
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\! Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!}
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!}
\lim u \limsup v \liminf w \min x \max y\! Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim u \limsup v \liminf w \min x \max y\!}
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\! Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!}
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!}

Modular arithmetic

s_k \equiv 0 \pmod{m} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k \equiv 0 \pmod{m}\,\!}
a\,\bmod\,b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\,\bmod\,b\,\!}

Derivatives

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}}

Sets

\forall \exists \empty \emptyset \varnothing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall \exists \empty \emptyset \varnothing\,\!}
\in \ni \not \in \notin \subset \subseteq \supset \supseteq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!}
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!}
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!}

Operators

+ \oplus \bigoplus \pm \mp - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \oplus \bigoplus \pm \mp - \,\!}
\times \otimes \bigotimes \cdot \circ \bullet \bigodot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!}
\star * / \div \frac{1}{2} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \star * / \div \frac{1}{2}\,\!}

Logic

\land (or \and) \wedge \bigwedge \bar{q} \to p Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \land \wedge \bigwedge \bar{q} \to p\,\!}
\lor \vee \bigvee \lnot \neg q \And Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lor \vee \bigvee \lnot \neg q \And\,\!}

Root

\sqrt{2} \sqrt[n]{x} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2} \sqrt[n]{x}\,\!}

Relations

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!}
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!}

Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!}

Arrows

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!}
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!}
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!}
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!}
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!}
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!}
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!}

Special

\And \eth \S \P \% \dagger \ddagger \ldots \cdots Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!}
\smile \frown \wr \triangleleft \triangleright \infty \bot \top Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!}
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!}
\ell \mho \Finv \Re \Im \wp \complement Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell \mho \Finv \Re \Im \wp \complement\,\!}
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!}

Unsorted (new stuff)

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown}
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!}
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes}
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant}
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq}
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft}
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot}
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq}
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork}
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq}
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid}
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr}
\subsetneq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \subsetneq}
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq}
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq}
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq}
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!}
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!}
\dashv \asymp \doteq \parallel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dashv \asymp \doteq \parallel\,\!}
\ulcorner \urcorner \llcorner \lrcorner Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ulcorner \urcorner \llcorner \lrcorner}

Larger Expressions

Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 \,\!}
Subscript a_2 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_2} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_2 \,\!}
Grouping a^{2+2} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{2+2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{2+2}\,\!}
a_{i,j} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{i,j}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{i,j}\,\!}
Combining sub & super without and with horizontal separation x_2^3 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2^3} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2^3 \,\!}
{x_2}^3 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x_2}^3} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x_2}^3 \,\!}
Super super 10^{10^{ \,\!{8} } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{10^{ \,\! 8 } }}
Super super 10^{10^{ \overset{8}{} }} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{10^{ \overset{8}{} }}}
Super super (wrong in HTML in some browsers) 10^{10^8} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{10^8}}
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sideset{_1^2}{_3^4}\prod_a^b}
{}_1^2\!\Omega_3^4 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_1^2\!\Omega_3^4}
Stacking \overset{\alpha}{\omega} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overset{\alpha}{\omega}}
\underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overset{\alpha}{\underset{\gamma}{\omega}}}
\stackrel{\alpha}{\omega} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{\alpha}{\omega}}
Derivative (forced PNG) x', y'', f', f''\!   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x', y'', f', f''\!}
Derivative (f in italics may overlap primes in HTML) x', y'', f', f'' Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x', y'', f', f''} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x', y'', f', f''\!}
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^\prime, y^{\prime\prime}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^\prime, y^{\prime\prime}\,\!}
Derivative (wrong in PNG) x\prime, y\prime\prime Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\prime, y\prime\prime} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\prime, y\prime\prime\,\!}
Derivative dots \dot{x}, \ddot{x} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{x}, \ddot{x}}
Underlines, overlines, vectors \hat a \ \bar b \ \vec c Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat a \ \bar b \ \vec c}
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}}
\overline{g h i} \ \underline{j k l} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{g h i} \ \underline{j k l}}
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C}
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overbrace{ 1+2+\cdots+100 }^{5050}}
Underbraces \underbrace{ a+b+\cdots+z }_{26} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underbrace{ a+b+\cdots+z }_{26}}
Sum \sum_{k=1}^N k^2 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^N k^2}
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \sum_{k=1}^N k^2}
Product \prod_{i=1}^N x_i Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^N x_i}
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \prod_{i=1}^N x_i}
Coproduct \coprod_{i=1}^N x_i Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \coprod_{i=1}^N x_i}
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \coprod_{i=1}^N x_i}
Limit \lim_{n \to \infty}x_n Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}x_n}
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \lim_{n \to \infty}x_n}
Integral \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx}
Integral (alternate limits style) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{3}\frac{e^3/x}{x^2}\, dx}
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \int\limits_{-N}^{N} e^x\, dx}
Integral (force \textstyle, alternate limits style) \textstyle \int_{-N}^{N} e^x\, dx Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \int_{-N}^{N} e^x\, dx}
Double integral \iint\limits_D \, dx\,dy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iint\limits_D \, dx\,dy}
Triple integral \iiint\limits_E \, dx\,dy\,dz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iiint\limits_E \, dx\,dy\,dz}
Quadruple integral \iiiint\limits_F \, dx\,dy\,dz\,dt Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iiiint\limits_F \, dx\,dy\,dz\,dt}
Line or path integral \int_C x^3\, dx + 4y^2\, dy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_C x^3\, dx + 4y^2\, dy}
Closed line or path integral \oint_C x^3\, dx + 4y^2\, dy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oint_C x^3\, dx + 4y^2\, dy}
Intersections \bigcap_1^n p Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigcap_1^n p}
Unions \bigcup_1^k p Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigcup_1^k p}

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{4}=0.5}
Small Fractions \tfrac{2}{4} = 0.5 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{2}{4} = 0.5}
Large (normal) Fractions \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a}
Large (nested) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a}
Binomial coefficients \binom{n}{k} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \binom{n}{k}}
Small Binomial coefficients \tbinom{n}{k} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tbinom{n}{k}}
Large (normal) Binomial coefficients \dbinom{n}{k} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dbinom{n}{k}}
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} x & y \\ z & v \end{matrix}}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} x & y \\ z & v \end{vmatrix}}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{Vmatrix} x & y \\ z & v \end{Vmatrix}}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} }
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{Bmatrix} x & y \\ z & v \end{Bmatrix}}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} x & y \\ z & v \end{pmatrix}}
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) }
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} }
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} }
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}}
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}}
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) \,\!} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=0}^\infty a_n x^n } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = a_0 +a_1x+a_2x^2+\cdots}

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}}
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} }

Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ( \frac{1}{2} )}
Good \left ( \frac{1}{2} \right ) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left ( \frac{1}{2} \right )}

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left ( \frac{a}{b} \right )}
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack}
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace}
Angle brackets \left \langle \frac{a}{b} \right \rangle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle \frac{a}{b} \right \rangle}
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|}
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil}
Slashes and backslashes \left / \frac{a}{b} \right \backslash Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left / \frac{a}{b} \right \backslash}
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow}
Delimiters can be mixed,
as long as \left and \right match
\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left [ 0,1 \right )}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle \psi \right |}
Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left . \frac{A}{B} \right \} \to X}
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]}
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle}
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|}
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil}
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow}
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow}
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash}

Alphabets and typefaces

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!}
\Eta \Theta \Iota \Kappa \Lambda \Mu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Eta \Theta \Iota \Kappa \Lambda \Mu \,\!}
\Nu \Xi \Pi \Rho \Sigma \Tau Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Nu \Xi \Pi \Rho \Sigma \Tau\,\!}
\Upsilon \Phi \Chi \Psi \Omega Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Upsilon \Phi \Chi \Psi \Omega \,\!}
\alpha \beta \gamma \delta \epsilon \zeta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \,\!}
\eta \theta \iota \kappa \lambda \mu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \theta \iota \kappa \lambda \mu \,\!}
\nu \xi \pi \rho \sigma \tau Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu \xi \pi \rho \sigma \tau \,\!}
\upsilon \phi \chi \psi \omega Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \upsilon \phi \chi \psi \omega \,\!}
\varepsilon \digamma \vartheta \varkappa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon \digamma \vartheta \varkappa \,\!}
\varpi \varrho \varsigma \varphi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi \varrho \varsigma \varphi\,\!}
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!}
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!}
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!}
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!}
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!}
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!}
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!}
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!}
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!}
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!}
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!}
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!}
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!}
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!}
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!}
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!}
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!}
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!}
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!}
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!}
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!}
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!}
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!}
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!}
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!}
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!}
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!}
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!}
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!}
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!}
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!}
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!}
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!}
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!}
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!}
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!}
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!}
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!}
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!}
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!}
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!}
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!}
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!}
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!}
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!}
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!}
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!}
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!}
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!}
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!}
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!}
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!}
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!}
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!}
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!}
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!}
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!}
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!}
Hebrew
\aleph \beth \gimel \daleth Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \aleph \beth \gimel \daleth\,\!}
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{abc}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{abc} \,\!}
mixed italics (bad) \mbox{if} n \mbox{is even} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if} n \mbox{is even}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if} n \mbox{is even} \,\!}
mixed italics (good) \mbox{if }n\mbox{ is even} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if }n\mbox{ is even}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if }n\mbox{ is even} \,\!}
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if}~n\ \mbox{is even}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{if}~n\ \mbox{is even} \,\!}

Color

Equations can use color:

  • {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}}
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}}

See here for all named colors supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See en:Wikipedia:Manual of Style#Color coding.

Formatting issues

Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \qquad b}
quad space a \quad b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \quad b}
text space a\ b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\ b}
text space without PNG conversion a \mbox{ } b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \mbox{ } b}
large space a\;b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\;b}
medium space a\>b [not supported]
small space a\,b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\,b}
no space ab Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ab\,}
small negative space a\!b Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\!b}

Alignment with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-N}^{N} e^x\, dx} should look good.

If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Examples

A sample conforming diagram is commons:Image:PSU-PU.svg.

Examples

Quadratic Polynomial

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ax^2 + bx + c = 0}


<math>ax^2 + bx + c = 0</math>

Quadratic Polynomial (Force PNG Rendering)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ax^2 + bx + c = 0\,\!}


<math>ax^2 + bx + c = 0\,\!</math>

Quadratic Formula

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}


<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

Tall Parentheses and Fractions

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)}


<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}}


 <math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
 

Integrals

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy}


<math>\int_a^x \int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

Summation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}}


<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

Differential Equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u'' + p(x)u' + q(x)u=f(x),\quad x>a}


<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

Complex numbers

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)}


<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

Limits

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{z\rightarrow z_0} f(z)=f(z_0)}


<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

Integral Equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi_n(\kappa)  = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR}


<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

Example

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}}


<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \begin{cases}1 & -1 \le x < 0 \\  \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}}


<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & \mbox{otherwise}
 \end{cases}
 </math>

Prefixed subscript

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}}


 <math>{}_pF_q(a_1,...,a_p;c_1,...,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}
 \frac{z^n}{n!}</math>

Fraction and small fraction

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  \frac {a}{b}}Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  \tfrac {a}{b} }

<math> \frac {a}{b}\  \tfrac {a}{b} </math>


Binary Operators

Code Output Code Output Code Output Code Output
\amalg Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \amalg} \cup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cup} \oplus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oplus} \times Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times}
\ast Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ast} \dagger Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dagger} \oslash Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oslash} \triangleleft Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangleleft}
\bigcirc Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigcirc} \ddagger Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ddagger} \otimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes} \triangleright Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangleright}
\bigtriangledown Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigtriangledown} \diamond Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \diamond} \pm Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm} \unlhd
\bigtriangleup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigtriangleup} \div Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \div} \rhd
\bullet Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bullet} \lhd \setminus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \setminus} \uplus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \uplus}
\cap Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cap} \mp Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mp} \sqcap Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqcap} \vee Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vee}
\cdot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cdot} \odot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \odot} \sqcup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqcup} \wedge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \wedge}
\circ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \circ} \ominus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ominus} \star Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \star} \wr Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \wr}

AMS Binary Operators

Code Output Code Output Code Output
\barwedge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \barwedge} \circledcirc Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \circledcirc} \intercal Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \intercal}
\boxdot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boxdot} \circleddash Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \circleddash} \leftthreetimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftthreetimes}
\boxminus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boxminus} \Cup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Cup} \ltimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ltimes}
\boxplus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boxplus} \curlyvee Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \curlyvee} \rightthreetimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightthreetimes}
\boxtimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \boxtimes} \curlywedge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \curlywedge} \rtimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rtimes}
\Cap Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Cap} \divideontimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \divideontimes} \smallsetminus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \smallsetminus}
\centerdot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \centerdot} \dotplus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dotplus} \veebar Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \veebar}
\circledast Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \circledast} \doublebarwedge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \doublebarwedge}

Variable-sized Math Operators

Code Output Code Output Code Output Code Output
\bigcap Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigcap} \bigotimes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigotimes} \bigwedge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigwedge} \prod Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod}
\bigcup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigcup} \bigsqcup Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigsqcup} \coprod Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \coprod} \sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum}
\bigodot Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigodot} \biguplus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \biguplus} \int Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int}
\bigoplus Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \bigoplus } \bigvee Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigvee} \oint Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \oint}

Bibliografia

  1. LaTex http://korpelainen.net/mediawiki/index.php/LaTeX